Question	Scheme	Marks	AOs
1 (a)	$3x^{3} - 17x^{2} - 6x = 0 \Longrightarrow x(3x^{2} - 17x - 6) = 0$	M1	1.1a
	$\Rightarrow x(3x+1)(x-6) = 0$	dM1	1.1b
	$\Rightarrow x = 0, -\frac{1}{3}, 6$	A1	1.1b
		(3)	
(b)	Attempts to solve $(y-2)^2 = n$ where <i>n</i> is any solution0 to (a)	M1	2.2a
	Two of 2, $2 \pm \sqrt{6}$	Alft	1.1b
	All three of 2, $2 \pm \sqrt{6}$	A1	2.1
		(3)	
(6 marks)			

Notes

(a)

M1: Factorises out or cancels by *x* to form a quadratic equation.

dM1: Scored for an attempt to find x. May be awarded for factorisation of the quadratic or use of the quadratic formula.

A1:
$$x = 0, -\frac{1}{3}, 6$$
 and no extras

(b)

- M1: Attempts to solve $(y-2)^2 = n$ where *n* is any solution ...0 to (a). At least one stage of working must be seen to award this mark. Eg $(y-2)^2 = 0 \Rightarrow y = 2$
- A1ft: Two of 2, $2 \pm \sqrt{6}$ but follow through on $(y-2)^2 = n \Rightarrow y = 2 \pm \sqrt{n}$ where *n* is a positive solution to part (a). (Provided M1 has been scored)

A1: All three of 2, $2 \pm \sqrt{6}$ and no extra solutions. (Provided M1A1 has been scored)

Question	Scheme	Marks	AOs
2 (a)	Deduces the line has gradient "-3" and point $(7,4)$	M1	2.2a
	Eg $y-4 = -3(x-7)$ y = -3x+25	A 1	1 11
	y = -3x + 23	A1 (2)	1.1b
(b)	Solves $y = -3x + 25$ and $y = \frac{1}{3}x$ simultaneously	M1	3.1a
	$P = \left(\frac{15}{2}, \frac{5}{2}\right) \text{ oe}$	A1	1.1b
	Length $PN = \sqrt{\left(\frac{15}{2} - 7\right)^2 + \left(4 - \frac{5}{2}\right)^2} = \left(\sqrt{\frac{5}{2}}\right)$	M1	1.1b
	Equation of <i>C</i> is $(x-7)^2 + (y-4)^2 = \frac{5}{2}$ o.e.	A1	1.1b
		(4)	
(c)	Attempts to find where $y = \frac{1}{3}x + k$ meets <i>C</i> using vectors Eg: $\binom{7.5}{2.5} + 2 \times \binom{-0.5}{1.5}$	M1	3.1a
	Substitutes their $\left(\frac{13}{2}, \frac{11}{2}\right)$ in $y = \frac{1}{3}x + k$ to find k	M1	2.1
	$k = \frac{10}{3}$	A1	1.1b
		(3)	
			(9 marl
(c)	Attempts to find where $y = \frac{1}{3}x + k$ meets <i>C</i> via		
	simultaneous equations proceeding to a 3TQ in x (or y) FYI $\frac{10}{9}x^2 + \left(\frac{2}{3}k - \frac{50}{3}\right)x + k^2 - 8k + \frac{125}{2} = 0$	M1	3.1a
	Uses $b^2 - 4ac = 0$ oe and proceeds to $k =$	M1	2.1
	$k = \frac{10}{3}$	Al	1.1b
		(3)	1

M1: Uses the idea of perpendicular gradients to deduce that gradient of *PN* is -3 with point (7,4) to find the equation of line *PN*

So sight of y-4=-3(x-7) would score this mark

If the form y = mx + c is used expect the candidates to proceed as far as c = ... to score this mark.

A1: Achieves y = -3x + 25

(b)

M1: Awarded for an attempt at the key step of finding the coordinates of point *P*. ie for an attempt at solving their y = -3x + 25 and $y = \frac{1}{3}x$ simultaneously. Allow any methods (including use of a calculator) but it must be a valid attempt to find both coordinates.

A1:
$$P = \left(\frac{15}{2}, \frac{5}{2}\right)$$

M1: Uses Pythagoras' Theorem to find the radius or radius ² using their $P = \left(\frac{15}{2}, \frac{5}{2}\right)$ and (7, 4). There must be an attempt to find the difference between the coordinates in the use of Pythagoras

A1: Full and careful work leading to a correct equation. Eg $(x-7)^2 + (y-4)^2 = \frac{5}{2}$ or its expanded

form. Do not accept
$$(x-7)^2 + (y-4)^2 = \left(\sqrt{\frac{5}{2}}\right)^2$$

(c)

M1: Attempts to find where $y = \frac{1}{3}x + k$ meets *C* using a vector approach

M1: For a full method leading to k. Scored for substituting their $\left(\frac{13}{2}, \frac{11}{2}\right)$ in $y = \frac{1}{3}x + k$

A1: $k = \frac{10}{3}$ only

Alternative I

M1: For solving $y = \frac{1}{3}x + k$ with their $(x-7)^2 + (y-4)^2 = \frac{5}{2}$ and creating a quadratic eqn of the form $ax^2 + bx + c = 0$ where both *b* and *c* are dependent upon *k*. The terms in x^2 and *x* must be collected together or implied to have been collected by their correct use in " $b^2 - 4ac$ " FYI the correct quadratic is $\frac{10}{9}x^2 + (\frac{2}{3}k - \frac{50}{3})x + k^2 - 8k + \frac{125}{2} = 0$ oe M1: For using the discriminant condition $b^2 - 4ac = 0$ to find *k*. It is not dependent upon the

previous M and may be awarded from only one term in k. Award if you see use of correct formula but it would be implied by \pm correct roots

A1:
$$k = \frac{10}{3}$$
 only

Alternative II

M1: For solving y = -3x + 25 with their $(x-7)^2 + (y-4)^2 = \frac{5}{2}$, creating a 3TQ and solving. M1: For substituting their $\left(\frac{13}{2}, \frac{11}{2}\right)$ into $y = \frac{1}{3}x + k$ and finding k A1: $k = \frac{10}{3}$ only

Questio	n Scheme	Marks	AOs
3 (a)	$f(-3) = 2(-3)^3 + 5(-3)^2 + 2(-3) + 15$		
	=-54+45-6+15	M1	1.1b
	$f(-3) = 0 \Longrightarrow (x+3)$ is a factor	A1	2.4
		(2)	
(b)	At least 2 of: a = 2, b = -1, c = 5	M1	1.1b
	All of: a = 2, b = -1, c = 5	A1	1.1b
		(2)	
(c)	$b^2 - 4ac = (-1)^2 - 4(2)(5)$	M1	2.1
	$b^2 - 4ac = -39$ which is <0 so the quadratic has no real roots so f(x) = 0 has only 1 real root	A1	2.4
		(2)	
(d)	(x =) 2	B1	2.2a
		(1)	
	Notes	(7	marks
A1:	Look for evidence of embedded values or two correct terms of $f(-3) = -54 + 45 - 6 + 15 =$ Achieves and states $f(-3) = 0$, and makes a suitable conclusion. Sight of for $x = -3$ is also acceptable. It must follow M1. Accept, for example, $f(-3) = 0 \Rightarrow (x+3)$ is a factor This may be seen in a preamble before finding $f(-3) = 0$ but in these case minimal statement ie QED, "proved", tick etc.		
(b) M1:	Correct method implied by values for at least 2 correct constants. Allow their $f(x)$ or within their working if they use algebraic division/other method be seen in part (a) and used in part (b).		
	All values correct. Allow embedded in their $f(x)$ or seen as the quotient from algebraic division. Isw incorrectly stated values of <i>a b</i> and <i>c</i> following a correct quadratic expression seen.		

$$\frac{2x^{2} - x + 5}{x + 3} \frac{2x^{2} + 5x^{2} + 2x + 15}{2x^{2} + 5x^{2} + 2x}$$

$$= \frac{x^{2} + 6x^{2}}{-x^{2} + 2x}$$

$$= \frac{x^{2} - 3x}{-x^{2} - 3x}$$
scores M1A1
$$= \frac{5x + 15}{5x + 15}$$

$$= \frac{5}{0}$$
(c)
M1: Either:
• considers the discriminant using their *a*, *b* and *c* (does not need to be evaluated)
$$\left(b^{2} - 4ac = \right)(-1)^{2} - 4(2)(5) \text{ (the } (-1)^{2} \text{ may appear as } 1^{2} \text{ and condone missing} \text{ brackets for this mark for } -1^{2} \text{.} \text{.} \text{Discriminant} = -39 \text{ is sufficient for M1}$$
• attempts to complete the square so score for $2\left(x \pm \frac{1}{4}\right)^{2} + ...$
• attempts to find the roots of the quadratic using the formula. The values embedded in the formula score this mark.
$$\frac{1 \pm \sqrt{-1^{2} - 4 \times 2 \times 5}}{\sqrt{-1^{2} - 4 \times 2 \times 5}} \text{ (the } (-1)^{2} \text{ may appear as } 1^{2} \text{ and condone missing brackets for this mark for } -1^{2})
• Sketches a graph of the quadratic. It must be a U shaped quadratic which does not cross the x-axis.
A1: Provides a correct explanation from correct working. They must
• Have a correct calculation
• Explanation that the quadratic has no (real) roots
• Minimal conclusion stating that $f(x) = 0$ has only one root eg $b^{2} - 4ac = -39 < 0$ so only one root is M1A0 (needs to explain the quadratic has no real roots)
eg $2\left(x - \frac{1}{4}\right)^{2} + \frac{39}{8} > 0$ so no real roots (for the quadratic) so (f(x) has) only one (real) root is M1A1
The value of the discriminant, completed square form $2\left(x - \frac{1}{4}\right)^{2} + \frac{39}{8}$ or roots of the quadratic $\left(= \frac{1 \pm \sqrt{39}i}{4} \right)$ must be correct.
If they sketch the quadratic graph it must be a U shaped quadratic which crosses the *y*-axis at 5 and has a minimum in the 1st quadrant. They must explain that the graph does not cross the *x*-axis so no real roots for the quadratic so only one root of f(x) = 0.
(d)$$

Question	Scheme	Marks	AOs
4	Let $u = \sqrt{x}$ $6x + 7\sqrt{x} - 20 = 0 \Longrightarrow 6u^2 + 7u - 20 = 0$		1.1b
	$\Rightarrow (3u-4)(2u+5)\{=0\}$	M1A1	1.1b
	Attempts $\sqrt{x} = "\frac{4}{3}", "-\frac{5}{2}" \Longrightarrow x =$	M1	1.1b
	$x = \frac{16}{9}$ only	A1 cso	2.3
		(4)	
		(4 n	narks)
Alt 1	$6x + 7\sqrt{x} - 20 = 0 \Longrightarrow 7\sqrt{x} = 20 - 6x \Longrightarrow 49x = (20 - 6x)^2$		
	$\Rightarrow 49x = 400 - 240x + 36x^2$	M1	1.1b
	$36x^2 - 289x + 400 \{= 0\}$	Al	1.1b
	(9x - 16)(4x - 25) = 0	M1	1.1b
	$x = \frac{16}{9}$ only	A1 cso	2.3
		(4)	
Alt 2	$6x + 7\sqrt{x} - 20 = 0 \Longrightarrow \left(3\sqrt{x} - 4\right)\left(2\sqrt{x} + 5\right) = 0$	M1 A1	1.1b 1.1b
	Attempts $\sqrt{x} = "\frac{4}{3}", "-\frac{5}{2}" \Longrightarrow x =$	M1	1.1b
	$x = \frac{16}{9}$ only	A1 cso	2.3
		(4)	
Notes:			
	mpts a valid method that enables the problem to be solved. See Gene Mathematics Marking at the front of the mark scheme for guidance		
	ng $u = \sqrt{x}$ and attempting to factorise to $(au \pm c)(bu \pm d)$ with $ab =$		
or n	naking $7\sqrt{x}$ the subject and attempting to square both sides.		
	ttempting to factorise to $(a\sqrt{x}+c)(b\sqrt{x}+d)$ with $ab=6$ $cd=20$		

or attempting to factorise to
$$(a\sqrt{x}\pm c)(b\sqrt{x}\pm d)$$
 with $ab = 6, cd = 20$

or by quadratic formula or completing the square following usual rules.

A1:
$$(3u-4)(2u+5)\{=0\}$$
 or $36x^2 - 289x + 400\{=0\}$ or $(3\sqrt{x}-4)(2\sqrt{x}+5)\{=0\}$
If they use the formula, it must be correct e.g., $u\{\operatorname{or}\sqrt{x}\} = \frac{-7\pm\sqrt{7^2-4(6)(-20)}}{12}$ followed
by $u\{\operatorname{or}\sqrt{x}\} = \frac{4}{3}$ or equivalent e.g., $\frac{16}{12}$. Ignore if they have $u\{\operatorname{or}\sqrt{x}\} = -\frac{5}{2}$ or not.

PMT

If they complete the square, they must have
$$\left(u + \frac{7}{12}\right)^2 = \frac{529}{144}$$
 followed by $u\left\{\text{or }\sqrt{x}\right\} = \frac{4}{3}$ or
equivalent e.g., $\frac{16}{12}$. Ignore if they have $u\left\{\text{or }\sqrt{x}\right\} = -\frac{5}{2}$ or not.
M1: Correct method from $p\sqrt{x} \pm q = 0$ leading to $x = \dots$ by squaring
In Alt 1, it is for solving their quadratic using the General Principles for Pure Mathematics
Marking. There must be a method shown, i.e., the solutions should not come straight from a
calculator. If attempting to factorise, it must be to $(ax\pm c)(bx\pm d)$ with $ab = 36, cd = 400$
In Alt 2, it is for squaring their value(s) for u to get $x = \dots$
A1: cso $x = \frac{16}{9}$ only. $x = \frac{25}{4}$ must be discarded. Note 0011 is not possible.
Allow "incorrect" $x = -\frac{16}{9}$ or $x = -\frac{25}{4}$ to be seen as long as they are discarded.
Ignore any reason they give for rejecting solutions.
Note that a method to solve their quadratic must be seen – solutions must not come directly
from a calculator. Simply stating the quadratic formula (without substitution) is insufficient.

Questio	n Scheme	Marks	AOs
5 (a)	Attempts both $y = 8 - 10 \times 1 + 6 \times 1^2 - 1^3$ and $y = 1^2 - 12 \times 1 + 14$	M1	1.1b
	Achieves $y = 3$ for both equations and gives a minimal conclusion / statement, e.g., (1, 3) lies on both curves so they intersect at $x = 1$	A1	1.1b
		(2)	
(b)	(Curves intersect when) $x^{2} - 12x + 14 = 8 - 10x + 6x^{2} - x^{3}$ $\Rightarrow x^{3} - 5x^{2} - 2x + 6 = 0$	M1	1.1b
	For the key step in dividing by $(x-1)$ $x^{3}-5x^{2}-2x+6=(x-1)(x^{2}+px\pm 6)$	dM1	3.1a
	$x^{3}-5x^{2}-2x+6=(x-1)(x^{2}-4x-6)$	A1	1.1b
	Solves $x^{2}-4x-6=0$ $(x-2)^{2}=10 \Longrightarrow x=$	ddM1	1.1b
	$x = 2 - \sqrt{10} \text{ only}$	A1	1.1b
		(5)	
A1 A1: Fo	 r M1 A0, allow a statement that (1,3) lies on both curves without sight of nongst various alternatives are: Setting x²-12x+14=8-10x+6x²-x³ and attempting to rearrange x³-5x²-2x+6=0 before substituting in x=1 Setting x²-12x+14=8-10x+6x²-x³ and attempting to divide x³ by (x-1) either by long division or inspection r the complete mathematical argument. equires both correct calculations with a minimal conclusion, which may be 	to $x^2 - 5x^2 - 2x$	+6
e.ş	9., in the alternatives • as $1^3 - 5 \times 1^2 - 2 \times 1 + 6 = 0$, hence curves meet when $x = 1$ • $x^3 - 5x^2 - 2x + 6 = (x-1)(x^2 - 4x - 6)$ so the curves intersect when low the use of x or k throughout this part.	-	
M1: Se	ts $x^2 - 12x + 14 = 8 - 10x + 6x^2 - x^3$ and proceeds to a cubic equation set = ust be seen or used in (b)	0	
	For the key step in realising that $(x-1)$ is a factor of the cubic. It is for dividing by $(x-1)$ to get the quadratic factor.		

It is for dividing by (x-1) to get the quadratic factor.

For division look for their first two terms, i.e.,
$$x^2 \pm 4x$$

(This will need checking if they have made an error
in rearranging the cubic.)
By inspection look for the first and last term $x^3 - 5x^2 - 2x + 6 = (x-1)(x^2 + px \pm 6)$
A1: $x^3 - 5x^2 - 2x + 6 = (x-1)(x^2 - 4x - 6)$ or just $x^2 - 4x - 6$ or $k^2 - 4k - 6$ as their quadratic
factor following algebraic division.
ddM1: Attempts to solve their $x^2 - 4x - 6 = 0$, which must be a 3TQ, by completing the square or
the quadratic formula, leading to an exact solution. Their quadratic factor must not factorise.
Their quadratic formula, they need to have, e.g., $\frac{4 - \sqrt{4^2 - 4(-6)}}{2}$
or $\frac{4 - \sqrt{40}}{2}$ as a minimum (i.e., they must not jump straight to $2 - \sqrt{10}$ from a calculator).
A1: $k = 2 - \sqrt{10}$ or exact equivalent but allow the use of x e.g., $x = \frac{4 - \sqrt{40}}{2}$
If using the quadratic formula, the discriminant must be processed.
Must come from a correct quadratic factor.
They must have discarded $2 + \sqrt{10}$ if seen.

Question	Scheme	Marks	AOs
6(a)	$f(x) = (x-2)^2 \pm$	M1	1.2
	$f(x) = (x-2)^2 + 1$	A1	1.1b
		(2)	
(b)(i)	P = (0, 5)	B1	1.1b
(b)(ii)	Q = (2, 1)	B1ft	1.1b
		(2)	
(4 marks			
Notes			

(a)

M1: Achieves $(x-2)^2 \pm \dots$ or states a = -2

A1: Correct expression $(x-2)^2 + 1$ ISW after sight of this

Condone a = -2 and b = 1. Condone $(x-2)^2 + 1 = 0$

(b)

(i) B1: Correct coordinates for *P*. Allow to be expressed x = 0, y = 5(ii) B1ft: Correct coordinates for *Q*. Allow to be expressed x = 2, y = 1 (Score for the correct answer or follow through their part (a) so allow (-a, b) where *a* and *b* are numeric) Score in any order if they state P = (0, 5) and Q = (2, 1)Allow part (b) to be awarded from a sketch. So award First B1 from a sketch crossing the *y*-axis at 5 Second B1 from a sketch with minimum at (2, 1)

.....

Question	Scheme	Marks	AOs
7(a)	$H = ax^2 + bx + c$ and $x = 0$, $H = 3 \Rightarrow H = ax^2 + bx + 3$	M1	3.3
	$H = ax^{2} + bx + 3$ and $x = 120, H = 27 \Rightarrow 27 = 14400a + 120b + 3$	M1	3.1b
	$\mathbf{or} \frac{\mathrm{d}H}{\mathrm{d}x} = 2ax + b = 0 \text{ when } x = 90 \Longrightarrow 180a + b = 0$	A1	1.1b
	$H = ax^{2} + bx + 3$ and $x = 120, H = 27 \Rightarrow 27 = 14400a + 120b + 3$ and		
	$\frac{\mathrm{d}H}{\mathrm{d}x} = 2ax + b = 0 \text{ when } x = 90 \Longrightarrow 180a + b = 0$	dM1	3.1b
	$\Rightarrow a = \dots, b = \dots$		
	$\Rightarrow a = \dots, b = \dots$ $H = -\frac{1}{300}x^2 + \frac{3}{5}x + 3 \text{o.e.}$	A1	1.1b
		(5)	
(b)(i)	$x = 90 \Rightarrow H\left(=-\frac{1}{300}(90)^2 + \frac{3}{5}(90) + 3\right) = 30 \text{ m}$	B 1	3.4
(b)(ii)	$H = 0 \Longrightarrow -\frac{1}{300}x^2 + \frac{3}{5}x + 3 = 0 \Longrightarrow x = \dots$	M1	3.4
	x = (-4.868,) 184.868 $\Rightarrow x = 185 (m)$	A1	3.2a
		(3)	
(c)	Examples must focus on why the model may not be appropriate or give values/situations where the model would break down: E.g.The ground is unlikely to be horizontal		
	 The ball is not a particle so has dimensions/size 	B1	3.5b
	• The ball is unlikely to travel in a vertical plane (as it will spin)		
	• <i>H</i> is not likely to be a quadratic function in <i>x</i>		
		(1)	
(9 marks)			
Notes			

(a)

M1: Translates the problem into a suitable model and uses H = 3 when x = 0 to establish c = 3Condone with $a = \pm 1$ so $H = x^2 + bx + 3$ will score M1 but little else

M1: For a correct attempt at **using one of the two other pieces** of information within a quadratic model **Either** uses H = 27 when x = 120 (with c = 3) to produce a linear equation connecting *a* and *b* for the model **Or** differentiates and uses $\frac{dH}{dx} = 0$ when x = 90. Alternatives exist here, using the

symmetrical nature of the curve, so they could use $x = -\frac{b}{2a}$ at vertex or use point (60, 27) or (180,3).

A1: At least one correct equation connecting *a* and *b*. Remember "*a*" could have been set as negative so an equation such as 27 = -14400a + 120b + 3 would be correct in these circumstances.

dM1: Fully correct strategy that uses $H = a x^2 + b x + 3$ with the two other pieces of information in order to establish the values of **both** *a* **and** *b* for the model

A1: Correct equation, not just the correct values of a, b and c. Award if seen in part (b) (b)(i)

B1: Correct height including the units. CAO

(b)(ii)

M1: Uses H = 0 and attempts to solve for x. Usual rules for quadratics.

A1: Discards the negative solution (may not be seen) and identifies awrt 185 m. Condone lack of units

(c)

B1: Candidate should either refer to an issue with one of the four aspects of how the situation has been modelled or give a situation where the model breaks down

- the ball has been modelled as a particle
- there may be trees (or other hazards) in the way that would affect the motion

Condone answers (where the link to the model is not completely made) such as

- the ball will spin
- ground is not flat

Do not accept answers which refer to the situation after it hits the ground (this isn't what was modelled)

- the ball will bounce after hitting the ground
- it gives a negative height for some values for *x*

Do not accept answers that do not refer to the model in question, or else give single word vague answers

- the height of tee may have been measured incorrectly
- "friction", "spin", "force" etc
- it does not take into account the weight of the ball
- it depends on how good the golfer is
- the shape of the ball will affect the motion
- you cannot hit a ball the same distance each time you hit it

The method using an alternative form of the equation can be scored in a very similar way.

The first M is for the completed square form of the quadratic showing a maximum at x = 90

So award M1 for $H = \pm a(x-90)^2 + c$ or $H = \pm a(90-x)^2 + c$. Condone for this mark an equation with

$a=1 \Rightarrow H = (x-90)^2 + c \text{ or } c = 3 \Rightarrow H = a(x-90)^2 + 3 \text{ but will score}$	re little else

Alt (a)	$H = a(x+b)^2 + c$ and $x = 90$ at $H_{\text{max}} \Rightarrow H = a(x-90)^2 + c$	M1	3.3
	$H = 3$ when $x = 0 \implies 3 = 8100a + c$ or	M1	3.1b
	$H = 27$ when $x = 120 \Rightarrow 27 = 900a + c$	A1	1.1b
	$H = 3$ when $x = 0 \implies 3 = 8100a + c$		
	and	dM1	3.1b
	$H = 27$ when $x = 120 \Rightarrow 27 = 900a + c$	GIVII	5.110
	$\Rightarrow a = \dots, c = \dots$		
	$H = -\frac{1}{300} (x - 90)^2 + 30 \text{ o.e}$	A1	1.1b
		(5)	
(b)	$x = 90 \Longrightarrow H = 0^2 + 30 = 30 \mathrm{m}$	B1	3.4
		(1)	
	$H = 0 \Longrightarrow 0 = -\frac{1}{300} (x - 90)^2 + 30 \Longrightarrow x = \dots$	M1	3.4
	$\Rightarrow x = 185 (\mathrm{m})$	A1	3.2a
		(2)	

Note that $H = -\frac{1}{300}(x-90)^2 + 30$ is equivalent to $H = -\frac{1}{300}(90-x)^2 + 30$

Other versions using symmetry are also correct so please look carefully at all responses

E.g. Using a starting equation of
$$H = a(x-60)(x-120) + b$$
 leads to $H = -\frac{1}{300}(x-60)(x-120) + 27$

Quest	ion Scheme	Marks	AOs		
8(a)	<i>a</i> = 60	B1	3.1b		
	$2 = "60" - b(-20)^2 \Longrightarrow b = \dots$	M1	3.4		
	$H = 60 - 0.145(t - 20)^2$	A1	3.3		
		(3)			
(b)	Height = 2 m	B1	3.4		
	100	(1)			
(c)	/	M1	3.4		
	$H = 29\cos(9t + 180)^\circ + 31$	Al	3.3		
		(2)	2.5		
(d)	e.g. "The model allows for more than one circuit"	B1 (1)	3.5a		
		(1)	marks)		
	Notes	(*	mar K5)		
(a)					
B1:	a = 60 (may be seen in their final equation of the model or implied by 60 subs model)	tituted for a in	the		
M1:	Attempts to find b by substituting in $t = 0$, $H = 2$ and their a and proceeding t	to a value for b			
	May be seen as two simultaneous equations formed:				
	$2 = a - b(-20)^2$ and $60 = a - b(20 - 20)^2$ proceeding to a value for b				
A1:	$H = 60 - 0.145(t - 20)^2$ or equivalent such as $H = -\frac{29}{200}t^2 + 5.8t + 2$ or $H = 60$	$50 - \frac{29}{200}(t - 20)$) ² isw		
	once a correct equation for the model is seen. Must be in terms of <i>H</i> and <i>t</i> . If $a = 60, b = 0.145$ then A0	200			
	A correct answer with no working seen scores full marks.				
(b) B1:	2 cao (condone lack of units) This can be scored even if their model in (a) is i have used symmetry to determine this value)	ncorrect (they	may		
(c)	nave used symmetry to determine this value)				
M1:	$(\alpha =)$ 180 or $(\beta =)$ 31 Condone $(\alpha =) \pi$				
A1:	$H = 29\cos(9t + 180)^\circ + 31$ or equivalent e.g. $H = -29\cos(9t) + 31$ is wonce a	correct equation	on for		
111.	the model is seen. Must be in terms of H and t. If they just state $\alpha = 180$, $\beta = 3$				
	A correct equation with no working seen scores both marks. Does not require		bol.		
(d)					
B1:	 the alternative model allows repetition (allow phrases e.g. "multiple cycles", "repeated circuits", "cyclical", "periodic", "loops around", "the original model can only go up and down once") the alternative model after 2 minutes the carriage will be back at the start (e.g. "at 2 mins, H = 2") the original/quadratic model after 40 seconds (or any time after this) will be negative (e.g. "the height will be negative which cannot happen") the original model after 2 minutes would not be back at the start Do not allow vague responses on their own e.g. "the original model is a parabola" If calculations are used then they must be correct using a correct model (allow rounded or truncated) 				
	Look for a valid reason and ignore reference to anything else as long as it does				
		30 100 120	.		
	h 2 27 46 56 60 56 46 27 2 -31 -71 -118 -172 -4	62 -868 -1390)		